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In this paper, we consider the variabl e coefficient Poisson equation with Dirichlet
boundary conditions on an irregular domain and show that one can obtain second-
order accuracy with arather simple discretization. Moreover, since our discretization
matrix is symmetric, it can be inverted rather quickly as opposed to the more com-
plicated nonsymmetric discretization matrices found in other second-order-accurate
discretizationsof thisproblem. Multidimensional computational resultsare presented
to demonstrate the second-order accuracy of this numerical method. In addition, we
use our approach to formulate a second-order-accurate symmetric implicit time dis-
cretization of the heat equation onirregular domains. Then webriefly consider Stefan
problems.  © 2002 Elsevier science (USA)

1. INTRODUCTION

In [20] the ghost fluid method [7] was used as a guide to develop a first-order-accurate
symmetric discretization of the variable coefficient Poisson equation in the presence of an
irregular interface across which the variable coefficients, the solution, and the derivatives
of the solution may have jumps. This new numerical method was applied to two-phase
incompressible flow in [15] and to incompressible flame front discontinuities in [21]. In
this paper, we consider a similar Poisson equation where Dirichlet boundary conditions
(instead of jump conditions) areimposed on theirregular interface. In this case, the solution
is not coupled across the interface, and we are able to design a second-order-accurate
symmetric discretization as opposed to the first-order-accurate discretization proposed in
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[20] for the jump condition case. Both the discretization proposed hereand that in [20] yield
symmetric matrices that can readily be inverted with a number of fast methods; e.g., we
use a preconditioned conjugate gradient (PCG) method (see, e.g., [10]) in both instances.
We note that [18] designed a second-order-accurate method for the jJump condition case as
well, but their discretization matrix is not symmetric.

This new second-order-accurate symmetric discretization is also quite useful for solving
Stefan problems. We use a level set formulation [22] to represent the interface location
and a finite difference discretization of the heat equation on a Cartesian grid to solve for
the temperature. In order to avoid the stringent O(AX?), or even worse O(0#?Ax?) with
0 < 6 <1 for cells cut by the interface, time step restriction imposed by explicit time
discretization of the heat equation, we use an implicit time discretization. This requires a
matrix inversion that can be rather time-consuming especially if one uses a nonsymmetric
discretization of the spatial terms. Thiswas the casein [5] where the nonsymmetric matrix
was inverted with the (very slow) Gauss-Seidel method (see, e.g., [10]). Our alternative
symmetric discretization allows a (relatively fast) PCG method to be used for the matrix
inversion.

The earliest level set method for solidification type problems was presented in [27]
where the authors recast the equations of motion into aboundary integral equation and used
the level set method to update the location of the interface. In [5] the boundary integral
eguations were avoided by using a finite difference method to solve the heat equation on a
Cartesian grid with Dirichlet boundary conditions imposed on the interface. The jump in
thefirst derivatives of the temperature was used to compute an interface vel ocity which was
extended to a band about the interface and used to evolve alevel set function in time. The
velocity calculation in [5] is rather awkward and both the standard grid and a 45° rotated
grid are used to aid in the removal of nonphysical grid anisotropy effects. This velocity
computation was improved upon in [17] where the authors show good agreement between
the level set method and phase field methods for the case where the thermal conductivities
arethesameinboth materials. In addition, [17] showed that thelevel set method continuesto
performwell for the case wherethe thermal conductivitiesare different in the two materials.
For more details on phase field methods for the Stefan problem, see [17] and the references
therein.

In [30], the authors discretized the heat equation on a Cartesian grid in a manner very
similar tothat proposedin[5], resulting in anonsymmetric matrix when applying animplicit
timediscretization. Reference[30] used front tracking to updatethelocation of theinterface,
improving upon the front-tracking approach proposed in [14], which used the smeared out
immersed boundary method from [23] and explicit time stepping. The interested reader
is also referred to [4] for an interesting analysis of the immersed boundary method in
conjunction with heat transport.

In [12], the authors solved a variable coefficient Poisson equation in the presence of
an irregular interface where Dirichlet boundary conditions were imposed. They used a
finite volume method that results in a nonsymmetric discretization matrix. Both multigrid
methods and adaptive mesh refinement were used in [12], and in [11] this nonsymmetric
finite volume discretization was coupled to avolume of fluid front tracking method in order
to solve the Stefan problem.

The interested reader is referred to [5, 14] and the references therein for an extensive
summary of computational resultsfor the Stefan problem. Most notably, [25] uses adaptive
finite element methods for both the heat equation and for the interface evolution producing
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spectacular (and rare) three-dimensional results. Other impressivethree-dimensional results
can befound in the phasefield model of [16] and thefinite difference diffusion Monte Carlo
method of [24].

2. EQUATIONS

2.1. Poisson Equation

Consider a Cartesian computational domain, €2, with exterior boundary, 92, and alower
dimensional interface, I, that divides the computational domain into disjoint pieces, 2~
and Q. The variable coefficient Poisson equation is given by

V- (BROVUX) = f(X), XeQ, )
whereX = (x, y, z) arethe spatial dimensions, V = (%, aiy 2 ) isthe divergence operator,
and B(X) is assumed continuous on each digoint subdomain, Q~and Q, but may be
discontinuous across the interface I'. Furthermore, B(X) is assumed to be positive and
bounded below by somee > 0.0n 9%, either Dirichlet boundary conditionsof u(X) = g(X)
or Neumann boundary conditions of un(X) = h(X) are specified. Note that u, = Vu - N is
the normal derivative of u with normal N.

In[20], Eq. (1) was solved with afirst-order numerical method when the jump conditions
[u]lr = a(X) and [Bun]r = b(X) were specified across the interface. If instead, a Dirichlet
boundary condition of ur = c(X) is specified on the interface, then Eq. (1) decouplesinto
two separate equations, one on 2~ and one on Q*. Any jumps of u, Buy,, or 8 across the
interface can be ignored, allowing Eq. (1) to be considered separately and independently
onQ~ andon Q*.

2.2. Heat Equation
Starting from conservation of mass, momentum, and energy, we can obtain
p& + pV - Ve+ pv-V =V . (kVT), 2
where p isthedensity, eistheinternal energy per unit mass, V= (v1, vo, v3) aretheveloc-
ities, p isthe pressure, k isthe thermal conductivity, and T is the temperature. Assuming
that e depends on at most temperature, and that the specific heat at constant volume, c,,
is constant leadsto e = g, + ¢, (T — T,), where g, isthe internal energy per unit mass at
some reference temperature T, [3]. This and the incompressibility assumption, V - V = 0,
simplify Eq. (2) to
pCTi+ pC,V - VT = V- (kVT), (3
which can be further smplified to the standard heat equation

pC Ty =V - (kVT), 4

ignoring the effects of convection, i.e., setting V =0.
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2.3. Interface Velocity and Jump Conditions

Unreacted and reacted incompressible flows are separated by an interface across which
the unreacted material is converted to the reacted material, and we use “u” and “r” sub-
scripts to refer to the unreacted and reacted materials, respectively. The interface velocity
is denoted by W = DN, where D is the normal component, of the interface velocity and
N = (ng, Ny, n3) is the loca unit normal to the interface. The normal component, of the
interface velocity is calculated by adding the unreacted materials normal velocity to the
reaction speed, S. That is, D = (Vy), + S, where Vyy =V - N isthe normal velocity.

Conservation of mass, momentum, and energy implies the standard Rankine-Hugoniot
jump conditions across the interface

[p(Vy — D)] = 0 5)
[p(Vn —D)?+p] =0 (6)
_ 2 N

[(pe+ P 2D, p) (Vi — D>} _ kT - NI, @)

where[ A] = A, — A, defines”[-]” asthejump inaquantity acrosstheinterface. Equation 7
wasderived assuming that thetangential vel ocitiesare continuousacrosstheinterface, which
istruewhen D # V\,i.e, S# 0(see, e.g., [8]). This equation can be rewritten as

22
R (A S

using Eq. (5) and D = (Vn)u + S. Assuming the enthalpy per unit mass, h = e+ %, de-
pends on at most temperature and that the specific heat at constant pressure, ¢, is constant
leads to h = hy + ¢cp(T — To), where h, is the enthalpy per unit mass at some reference
temperature T, [3]. This allows usto rewrite Eq. (8) as

2a2
—pu8<[ho] el - T + {p—lzD — [kVT - NI, ©

wherewe have used thefact that the temperatureiscontinuous acrosstheinterface, [T] = 0,
and labeled the interface temperature T, . It is convenient to choose a reference temperature
T, equal to the standard temperature at which the reaction takes place; e.g., in the case of
freezing water T, = 273 K.

For the Stefan problem, we assume that there is no expansion across the front (i.e.,
[p] = 0), reducing Eq. (5) to[Vn] = 0, Eq. (6) to[p] = 0, and Eq. (9) to

—pS([ho] + [cp](Ti — To)) = [kVT - N, (10)

where p = p, = pr. Furthermore, the standard interface boundary condition of T) = T,
reduces this last equation to

—pSiho] = [kVT - NJ, (12)

where [h,] is calculated at the reaction temperature of T, = T,.
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2.4. Level Set Equation
Thelevel set equation

o +W-Ve =0 (12)

isused to keep track of theinterfacelocation asthe set of pointswhere¢ = 0. The unreacted
and reacted material s are then designated by the pointswhere ¢ > 0 and ¢ < 0, respectively.
Using ¢ < Oinstead of ¢ = O for the reacted points removes the measure zero ambiguity
of points that happen to lie on the interface. In this sense, the numerical interface liesin
between ¢ = 0 and the positive values of ¢ and can be located numerically by finding the
zero level of ¢. To keep the values of ¢ close to those of a signed distance function, i.e.,
V| = 1, the reinitialization equation

¢ + S(@)(IVe| —1) =0 (13)

isiterated for afew stepsin ficticioustime, z. Here S(¢o) is asmoothed out sign function.
Thelevel set functionisused to computethenormal N = vg; andthecurvature = -V - N
in a standard fashion. For more details on the level set function, see[7, 15, 22, 29].

3. NUMERICAL METHOD

3.1. Poisson Equation

Consider the variable coefficient Poisson equation in one spatial dimension
(ﬂux)x =f (14)

with Dirichlet boundary conditionsof u = g ontheinterfacewhere¢ = 0. Onecan consider
each simply connected portion of the domain separately, i.e., Eqg. (14) can be solved on the
subdomain where ¢ < 0 independent of the solution procedure for the subdomain where
¢ > 0. Although in practice, it is usually simpler and more efficient to solve for both
subdomains at the same time.

The computational domain is discretized into cells of size Ax where the cell centers are
referred to asgrid pointsor grid nodeswith theith grid nodelocated at x; . The cell edgesare
referred to as fluxes so that the two fluxes bounding the ith computational cell are located
at X1 The solution to the Poisson equation is computed at the grid nodes and is written
as u; = u(x). An analogous definition holds for f;, gi, and ¢;. Since 8 and ¢ are known
only at the grid nodes x;, their values at the fluxes is defined by the linear average of the
nodal values, e.g., ¢i+1/2 = (¢i + ¢i+1)/2 isasecond-order-accurate approximation to ¢ at
the flux located between theith and (i + 1)st cells.

In the absence of an irregular interface, the standard discretization for Eq. (14),

B (U5t) — A (A 5)
AX

= f, (15)

can be used to solvethis problem with Dirichlet u = g boundary conditionson 9<2 enforced
by setting u; = g; when x; is aboundary point. For each unknown, u;, Eq. (15) is used to
fill in one row of amatrix creating alinear system of equations. Since the resulting matrix
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is symmetric, a wide number of fast linear solvers can be used. In the examples section,
the symmetric linear system is solved with a PCG method using an incomplete Choleski
preconditioner [10].

Next, suppose that an interface point, x,, is located in between two grid points x; and
Xi+1 with aDirichlet u = u, boundary condition applied at x, . Here we will only address
computing the numerical solution to theleft of x; noting that it isindependent of the solution
to theright of x, . Equation (15) is <till valid for all the unknowns to the left and including
U;_1, but can no longer be applied at x; to solve for u; since the subdomain to the left of x,
does not contain a valid value of u;;. This can be remedied by defining a ghost value of
uS,, at x;.+1 and rewriting Eq. (15) as

ﬁi+%(uﬁ27;w) _ﬁi—%(%)

= fi 16
— | (16)
in order to solve for u;. Possible candidates for u,; include
u®, = u 17)
u + @ — uy;
= (18)

and

S 2t (202 — 2)ui + (=02 + Duj_1

I+l 62+ 6 (19)

using constant, linear, and quadratic extrapolation, respectively. Here 6 € [0, 1] is defined
by 6 = X and canbecalculated asd = % since¢ = Oat x; andissigned away fromx; .
Since Egs. (18) and (19) are poorly behaved for small 6, they are not used when 6 < Ax.
Instead, u; is set equal to u;, which effectively moves the interface from x; to x;. This
second-order-accurate perturbation of the interface location does not degrade the overall
second-order accuracy of the solution obtained using Eqg. (15) to solve for the remaining
unknowns. Furthermore, u; = u, is second order accurate as long as the desired solution
has bounded first derivatives.
Plugging Eqg. (19) into Eqg. (16) gives a nonsymmetric discretization of

() - (=) _, 0
BS(OAX + AX)

in the case of g = 1. Equation (20) is the nonsymmetric discretization used in [5, 30]
to obtain second-order-accurate numerical methods. That is, both [5] and [30] use the
quadratic extrapolation given in Eq. (19) to obtain second-order accuracy. Alternatively,
plugging Eq. (18) into Eq. (16) gives a symmetric discretization of

s () = A1 (M5
AX

— f (21)

based on linear extrapolation in the partial cell. Surprisingly, this symmetric discretization
is second-order-accurate aswell. Thiswasfirst pointed out in [6] and is elaborated on here.
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Assumethat the standard second-order-accurate discretizationin Eq. (15) isused to obtain
the standard linear system of equationsfor u at every grid point except for x;, and Eq. (16) is
used to write alinear equation for u; introducing anew unknown u® . The system s closed
with Eq. (18) for ug,,. In practice, Egs. (18) and (16) are combined to obtain Eq. (21) and a
symmetric linear system. Solving this linear system of equations leads to well-determined
values (up to some prescribed tolerance near roundoff error levels) of u at each grid node
in the subdomain as well as a well-determined value of uiG+l (from Eq. (18)). Designate (i
as the solution vector containing all these values of u.

Next, consider amodified problem where a Dirichlet boundary condition of uj ;1 = u&l
is specified at x;1, where uZ,; is chosen to be the value of uZ,, from U (defined above).
This modified problem can be discretized to second-order accuracy everywhere using the
standard discretization in Eq. (15) at every node except at X; where Eg. (16) is used. Note
that Eq. (16) isthe standard second-order-accurate discretization when aDirichlet boundary
condition of uj;; = uiG+1 isapplied at X; 1. Thus, this new linear system of equations can
be solved in standard fashion to obtain a second-order-accurate solution at each grid node.
Therealization that G (defined above) is an exact solution to this new linear system implies
that G is avalid second-order-accurate solution to this modified problem.

Since U is a second-order accurate solution to the modified problem, G can be used
to obtain the interface location for the modified problem to second-order accuracy. The
linear interpolant that uses u; at x; and uicirl at x; 1 predicts an interface location of exactly
X; . Since higher order accurate interpolants (higher than linear) can contribute at most an
O(AXx?) perturbation of theinterfacelocation, theinterfacel ocation dictated by themodified
problem is at most an O(Ax?) perturbation of the true interface location, x;. Thus, U is
a second-order-accurate solution to a modified problem where the interface location has
been perturbed by O(AXx?). This makes U a second-order-accurate solution to the original
problem as well. (The interested reader is referred to a more detailed proof of a related
discretization to asimilar problem; see Jones and Menzies [13].)

Similarly, note that plugging Eq. (17) into Eq. (15) effectively perturbs the interface by
an O(AX) amount resulting in afirst-order-accurate algorithm.

In certain situations, 8 may only be known at the grid nodes and the interface, in which
case 3, +1 in Eq. (21) can be determined from a ghost value, ,3&1, and the usual averaging,

4 G
g = 2R, @)
noting that the ghost valueis easily defined using linear extrapolation,
B+ @O -1
o=y (23)

according to Eq. (18).

In multiple spatial dimensions, the equations are discretized in adimension by dimension
manner using theone-dimensional discretization outlined above. That is, the (Buy)x, (Buy)y,
and (Bu;), terms in Eq. (1) are each discretized independently in the same manner that
(Buy)x Was discretized in Eq. (14) above.
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3.2. Heat Equation
Consider the heat equation (4) with an explicit Euler time discretization

Tn+l_Tn 1
- V. (kVT" 24
At sy ( ) (24)

and Dirichlet boundary conditions of T = g on the interface where ¢ = 0. Assuming that
o and ¢, are constant in each subdomain allows Eq. (24) to be rewritten as

Tn+l —_Tn

=V kv, (25)

wherek = . For stability, atime step restriction of
pCy

a 2 2 2
S G + Gaaye * Gonzr) = (26)

is needed where 6,1, 6,, and 63 are the cell fractions in each spatial dimension for cells cut
by the interface with 0 < 6y, 6,, 63 < 1.
Implicit Euler time discretization

Tn+1 —_Tn

— V. (k n+1
At =V (kvT™) (27)

avoids the time step stability restriction in Eq. (26). Equation (27) can be rewritten as
T AtV - (kT =T, (28)

wherethe V - (kvT"1) term is discretized in the same fashion as the variable coefficient
Poisson equation (above) noting that each subdomain can be considered independently. For
each unknown, Ti”“, Eqg. (28) isusedtofill in onerow of amatrix creating alinear system of
equations. Since the resulting matrix is symmetric, awide number of fast linear solvers can
be used. In the examples section, the symmetric linear system is solved with aPCG method
using an incomplete Choleski preconditioner [10]. Note that Eq. (27) isfirst order in time
and second order in space, and one needsto choose At proportional to Ax? inorder to obtain
an overall asymptotic accuracy of O(AXx?). In the numerical examples section, we chose
the time step for the heat equation aseither AtH = 0.5Ax or AtH = 0.5Ax? depending on
whether we are trying to obtain first- or second-order overall accuracy, respectively.
The Crank—Nicolson scheme

Tn+l _ Tn

1 . 1 .
=Z2V.kvT™h + Zv. (kvT"
At > kVT )+2 kvTh (29)

can be used to achieve second order accuracy in both space and timewith At proportional to
AX. Inthe numerical examples section, we choose At" = 0.5Ax. For the Crank—Nicolson
scheme,

At . At .
T+ 7v S(kvTMh =T 4 7v ~(kvTM (30)

is used to create a symmetric linear system of equations for the unknowns Ti”“.
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3.3. Stefan Problem
3.3.1. Interface Velocity

Equation (11) is used to find the reaction speed Susing the jump inkV T - N across the
interface. Thus, accurate values of the temperature gradient are needed at grid nodes near
the interface. The local unit normal N = % is computed using the level set method (as
described in [15]).

Once Ty is defined in a band about the interface, we extrapolate the values of (Ty);
from the reacted side of the interface to the unreacted side and extrapolate the values
of (Tn)y from the unreacted side to the reacted side so that both (Ty), and (Ty)y are
defined at every grid point in a band about the interface. This is accomplished with
constant extrapolation in the direction norma to the interface and implemented by
solving

lL+N-VI =0 (31)

to steady state where |, = 0. Thisis done separately to advect | = (Ty), in one direction
and to advect | = (Ty)y in the other direction. Instead of time marching equation (31) in
fictitioustime t, afirst-order-accurate solution to the steady state of Eq. (31) isobtained us-
ing thefast (velocity) extension method in [1] (which is based on the fast marching method,;
see, eg., [26]).

Once values of both (Ty), and (Ty)y have been defined at grid nodes near the interface,
Eq. (11) isusedtofind the reaction speed Scalculating [KVT - N] inanode by nodefashion
using the nodal values of (Ty)r and (Ty)u.

We use the following procedure to calculate VT at grid points near the interface. There
arefour cases to consider when computing (Ty)i, j k: Case 1—If T jk, Ti—1jk ad Tiy1jk
al lie on the same side of the interface, then (Ty); j « is calculated with T; j « and either
Ti—1j.k or Tit1 j x depending on which of these two is closer to the interface as determined
by the local absolute value of ¢. Case 2—If T; j  and Ti_y j « lie on one side of the inter-
face, and Ti1 j k lies on the other side of the interface, then (Ty); j « is calculated using
Ti,j .« and the local interface boundary condition for T aslong as the distance from X j  to
the interface is greater than Ax?. Otherwise, Ti—1jk isused in place of T; j k. Case 3—If
Ti jx and T4« lie on one side of the interface, and Ti_1 j « lies on the other side of the
interface, then (Ty); j k iscalculated using T; ; « and the local interface boundary condition
for T aslong as the distance from X; j « to the interface is greater than AX2. Otherwise,
Ti+1,jk isused in place of T j k. Case 4—If T; j « lies on one side of the interface and
both Ti_1,jk and Ti41,jk lie on the opposite side of the interface, then the two local in-
terface boundary conditions for T are used to calculate (Tx); j« as long as the distance
between the two interface locations is greater than Ax2. Otherwise, the problem is under-
resolved and we set (Ty); j.x = 0 under the assumption that there is little variance in T in
between these two very close points on the interface. Ty and T, are calculated in asimilar
fashion.

The level set function is evolved in time from ¢" to ¢"** using nodal velocities, W =
SN, and a third-order-accurate TVD Runge—Kutta (see [15, 28]) time-stepping method.
Detailed discretizations for Eqg. (12) and for Eq. (13) are given in [7]. Note that the
fifth-order WENO discretization from [7] is used to discretize the spatial terms in
Egs. (12) and (13) for the numerical examples in this paper. For stability, a time step
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restriction of

w1 w2 w3

Att—+-—=+-—-) <05 32
(Ax + Ay + Az) (32)

is used in solving Eq. (12) with W = (wq, w2, ws). The overall time step is chosen as

min(AtH, Atl), where AtH = 0.5Ax or AtH = 0.5AX? as outlined above.

3.3.2. Ghost Cells

Equations (28) and (30) require avalid value of T" at each grid point. As the interface
moves, the grid points that cross the interface may no longer have valid values of T".
For example, consider the solidification of water where a grid point in the water with
T" > 273.15 K crosses over the interface into the ice. Now that grid point is associated
with theice, but still has T" > 273.15 K as opposed to a correct value of T" < 273.15 K.
These errors seem to have been ignored by most authors and are probably negligible when
thetemperatureis continuous acrosstheinterface. However, when the temperature (or more
likely its equivalent in arelated problem) is discontinuous across the interface, using this
invalid value of T" can cause significant errors.

In order to determine a ghost cell value of T";  at agrid point adjacent to the interface,
we use the interface boundary condition T, = g(X,) at the closest interface location X; =
Xi jk — ¢i,j,kl<|. Then assuming the temperature profile is locally linear, the ghost value is
defined as Ti[‘j,k =T + ¢ijx(Tn)i j.k, where (Ty)i,j k isthe value of Ty that has already
been extrapolated from the other side of the interface. That is, on the reacted side of the
interface the extrapolated value of (Ty)y is used, and on the unreacted side of the interface
the extrapolated value of (Ty); isused.

Besides a valid value of T", Eq. (30) requires a valid value of %V -(kvT" at each
grid point implying that ghost cell values of %V - (kvT™) need to be defined in grid cells
adjacent to the interface in case they are uncovered as the interface moves across the grid.
Since a second-order accurate quadratic extension of afunction does not change the values
of its second derivative, ghost cell values of % V - (kvT") are calculated by extrapolating
thisterm across the interface according to Eq. (31) with | = % V. (kvT"). Onceagain the
fast extension method from [1] isused. Here, in order to get smooth valuesof |, anisobaric
fix technique (see [9] and [7]) is used to extrapolate the values of | across the interface
that are at least one grid cell away from the interface, as opposed to the usual procedure of
extrapolating the values that are adjacent to the interface.

4. EXAMPLES

In each example, we use the level set function ¢ in order to decompose the domain into
separate regions. Theinterior region ~ is defined by ¢ < 0 while the exterior region Q*
is defined by ¢ > 0. In each example, the L* and L>° errors are computed at the final time.

4.1. Poisson Equation

Here we consider Eq. (1) for cases where g is piecewise constant on each subdomain or
spatially varying on each subdomain. When g isconstant on asubdomain, it can be moved to
theright-hand siderewriting Eq. (1) as Au = f where f = £. Inthiscase,  canbeignored.
Since Q™ is completely decoupled from Q, we only compute solutions for Q~ here.
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TABLE |
1D L aplace Equation

Number of points L-error Order L*-error Order
41 4.422 x 10°* — 9.236 x 1074 —
81 1.132 x 1074 197 2.654 x 1074 1.79
161 2736 x10° 204 7.306x10° 186
4.1.1. Example1

Consider uyx = f on © =[—0.5, 0.5] with an exact solution of u = 4x?sin(2zx) on
Q™ where¢ = |x| — 0.313 so that the interface does not lie on agrid point in our test cases.
Table | shows the results of the numerical accuracy tests.

4.1.2. Example 2

Consider (Buy)x = f on Q =[—0.5, 0.5] with an exact solution of u = €™ sin(27x)
and 8 = cos(x) on 2~ where¢ = |x| — 0.313. Figure 1 showsthe numerical solution with
61 grid points, and Table |1 shows the results of the numerical accuracy tests.

4.1.3. Example 3

Thisexamplewastaken from[19]. Consider Au = f onQ =[—1, 1] x [—1, 1] withan
exact solution of u = x? + y? on Q™. Theinterfaceis parameterized by (x(6), y(0)) where
X(9) =0.02¢/5+ (0.5+0.2sin(50)) cos(9) and y(#) = 0.02/5+ (0.5+0.2sin(50)) sin(9)
with6 € [0, 2]. In order to compute ¢, the interface was divided into 2000 equally spaced
points. At each grid node, the magnitude of the signed distance function ¢ was computed
using the closest point, and the sign of ¢ was computed by using the cross-product between

35

2.5r

151

0.5r

0.4 0.5

FIG.1. 1D Poissonequation, (Buy) = f,on[—0.313, 0.313] with Dirichlet boundary conditions. Thecircles
are the computed solution, and the solid line is the exact solution.
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TABLE 11
1D Poisson Equation

Number of points L -error Order Le-error Order
41 1.939 x 1072 — 8.072 x 1072 —

81 5.015x 10 195 2010x 102 201

161 1198x 10® 206 5532x10° 1.86

thenormal and tangent vectorsto theinterface so that ¢ isnegativeinsidethe closed contour.
Table Il shows the results of the numerical accuracy tests.

4.1.4. Example 4

This example was taken from [19]. Consider V - (BVu) = f on Q =[—1,1] x [0, 3]
with an exact solution of u = €*(x?sin(y) + y?) and 8 = 2 + sin(xy) on Q™. Theinterface
isparameterized by (x(0), y(0)) wherex(0) = 0.6 cos(9) — 0.3cos(30) andy(#) = 1.5+
0.7sin(0) — 0.07sin(30) + 0.2sin(79) with 6 € [0, 2r]. ¢ is computed as in Example 3.
Figure 2 shows the numerical solution with 61 grid points in the x-direction and 121
grid points in the y-direction, and Table IV shows the results of the numerical accuracy
tests.

4.1.5. Example 5

Consider Au= f onQ = [0, 1] x [0, 1] x [0, 1] with an exact solution of u(x, y, z) =
e ¥ Y7 onQ~ whereg = \/(x — 0.5)2 + (y — 0.5)2 + (z— 0.5)2 — 0.3. TableV shows
the results of the numerical accuracy tests.

4.1.6. Example 6

Consider V x (BVu) =f on ©=1[0,1] x [0, 1] x [0, 1] with an exact solution
of u=sn@rx)sin(dry)sin(drz), and B=xyz on Q- whee ¢=
/(X —0.5)2+ (y — 0.5)2 + (z— 0.5)2 — 0.3. Table VI shows the results of the numer-
ical accuracy tests.

4.2. Heat Equation

Here we consider Eq. (4) wherek isa (poss bly dlfferent) constant on each subdomain.
Inthiscase, Eq. (4) can berewrittenas T; = kAT wherek = k/pc, . Inthe examples below,
wetakek = 1.

TABLE 111
2D Laplace Equation

Number of points Lt-error Order L>-error Order
101 x 101 7.329 x 10-° — 9.777 x 10-° —
201 x 201 1776 x 10° 204 2427x10° 201

401 x 401 4.714 x 10°® 192 6.178x 10°° 197
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TABLE IV
2D Poisson Equation

Number of points Lt-error Order L>-error Order
81 x 121 2.414 x 10~* — 1.129 x 1073 —
161 x 241 6.291 x 10> 193 3043x10* 187
321 x 481 1707 x 105 188 7.804x10° 194
TABLEV

3D Laplace Equation

Number of points Lt-error Order L>-error Order

26 x 26 x 26 6.394 x 10°° — 2.272 x 10~* —
51 x 51 x 51 1.635 x 10°° 196 5198x10°° 212
101 x 101 x 101 3.997 x 10°° 203 1306 x 10® 1.99

TABLE VI
3D Poisson Equation

Number of points L -error Order L*>-error Order

21 x21x21 1.059 x 102 — 3.690 x 102 —
41 x 41 x 41 2.370 x 1073 2.16 8.989 x 103 2.03
81 x81lx81 5.619 x 10 2.03 2.170 x 1073 2.08

01

FIG. 2. 2D Poisson equation, V - (8Vu) = f, with Dirichlet boundary conditions. The circles are the
computed solution, and the solid line contour outlines the irregularly shaped computational domain.
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FIG.3. 2D heatequation, T, = AT, withDirichlet boundary conditions. Thecirclesarethe computed solution,
and the solid line contour outlines the irregularly shaped computational domain.

4.2.1. Example7

Consider T; = Txx on 2 = [—1, 1] with an exact solutionof T = gt cos(mX) on 2~
where¢ = |x| — 0.313. Tables VI, VIII, and I X show the results of the numerical accuracy
tests.

4.2.2. Example 8

Consider T, = AT on Q = [—1, 1] x [—1, 1] with an exact solution of T = e 2 sin(x)
sin(y) on Q. The interface is parameterized by (x(9), y(9)) where x(9) = 0.02/5 +
(0.5+0.2sin(50)) cos(@) and y(#) = 0.02v/5+ (0.5+ 0.2sin(50)) sin(®) with 6 €
[0, 27]. ¢ is computed asin Example 3. Figure 3 shows the numerical solution computed
with the Crank—Nicolson scheme at t = 0.1 with 81 grid points in each spatia direction.
Tables X, X1, and XI1 show the results of the numerical accuracy tests.

4.2.3. Example9

Consider T, = AT on © =0, 0.5] x [0, 0.5] x [0, 0.5] with an exact solution of T =
e~ sin(x) sin(y) sin(z) on ~, where¢ = 1/(x — 0.5)2 + (y — 0.5)2 + (z — 0.5)2—0.15.
Figure 4 shows the z=0.25 cross section of the numerical solution computed with the

TABLE VII
1D Heat Equation—Backward Euler—At =~ AX

Number of points L -error Order L*-error Order
41 1.443 x 1072 — 2.222 x 1072 —
81 7240 x 10 099 1118x102 1

161 3.634x10° 099 5609x103 097
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TABLE VIII
1D Heat Equation—Backward Euler—At ~ A x?

Number of points L-error Order L*-error Order
41 6.198 x 10~4 — 8.866 x 10~* —
81 1540 x 10* 198 2194 x10*  2.00
161 3.839x10° 201 5458x10°° 200
TABLE IX

1D Heat Equation—Crank—Nicholson—At =~ Ax

Number of points Lt-error Order L>-error Order
41 4.084 x 10°* — 6.811 x 104 —
81 9.907 x 10°° 201 1.623 x 10 2.08
161 2.424 x 10°° 2.03 3.993 x 10°° 2.00
TABLE X

2D Heat Equation—Backward Euler—At =~ Ax

Number of points Lt-error Order L*>-error Order
81 x 81 1.282 x 10°° — 2.340 x 104 —
161 x 161 5.618 x 10°° 1.19 4.131 x 10°° 2.50
321 x 321 2.539 x 1076 114 7.966 x 106 237
TABLE XI

2D Heat Equation—Backward Euler—At ~ AX?

Number of points Lt-error Order L*-error Order
81 x 81 4.886 x 1076 — 2.340 x 10~* —
161 x 161 9.307 x 10~/ 2.39 4.131 x 10°° 2.50
321 x 321 1.687 x 107 246 7569 x 1077 577
TABLE Xl1

2D Heat Equation—Crank—Nicholson—At =~ Ax

Number of points L*-error Order L>-error Order
81 x 81 5.440 x 10°¢ — 2.340 x 1074 —
161 x 161 7.888 x 1077 2.78 4131 x 10 2.50

321 x 321 1424 x 1077 246 6.207 x 1077  6.05

219
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TABLE XII1I
3D Heat Equation—Backward Euler—At =~ Ax

Number of points L -error Order Le-error Order

26 x 26 x 26 1.727 x 10°° — 4.129 x 10°¢ —
51 x 51 x 51 7.591 x 1077 119 1937x10°° 1.09
101 x 101 x 101 3.596 x 10~7 1.08 9524 x 1077 1.03

TABLE X1V
3D Heat Equation—Backward Euler—At =~ AXx?

Number of points L -error Order Le-error Order

26 x 26 x 26 4.139 x 1077 — 1.294 x 10°° —
51 x 51 x 51 1.049 x 1077 198 2958 x 1077 212
101 x 101 x 101 2559 x 108 2.03  7.536 x 1078 197

TABLE XV
3D Heat Equation—Crank—Nicholson—At = Ax

Number of points L -error Order Le-error Order

26 x 26 x 26 5.607 x 10~* — 2.805 x 1078 —
51 x 51 x 51 7.620 x 108 287 2.079x 107 375
101 x 101 x 101 2.094 x 10°® 186 5617 x 1078 1.88

05 O

FIG. 4. 3D heat equation, T, = AT, with Dirichlet boundary conditions. The lower dimensional z = 0.25
cross section of the solution is shown. The circles are the computed solution, and the solid line contour outlines
the computational domain.
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FIG. 5. 1D Stefan problem. The circles are the computed solution, and the solid line is the exact solution.
Theinterfaceis currently located near x = 0.75, where the temperature profile has akink.

Crank—Nicolson schemeatt = 0.1 with 41 grid pointsin each spatial direction. Tables XIl1,
X1V, and XV show the results of the numerical accuracy tests.

4.3. Stefan Problem

Here we consider the Stefan problem with k = p = ¢, = 1 in each subdomain. The
temperaturein each subdomain isgoverned by the heat equation T; = AT, and theinterface
velocity is given by

B 1
[ho]

from Eq. (11). A Dirichlet T = 0 interface boundary condition is used at the interface
separating the two subdomains.

S= [VT - N] (33)

4.3.1. Example 10

LetQ = [0, 1] withanexactsolutionof T = €05 —_1onQ~and T = 0onQ+, where
¢ =x—05a t=0. Here, [hy] = —1 so that the interface velocity is S=[VT x NIJ.

TABLE XVI
1D Stefan Problem—Backward Euler— At =~ Ax
Number of points L-error Order L>-error Order
41 7.065 x 10 — 8.949 x 10 —
81 3.542 x 10 0.99 4527 x 10 1.01

161 1.769 x 10~* 101 2272x10* 0.98
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TABLE XVII
1D Stefan Problem—Crank—Nicolson—At =~ Ax
Number of points Lt-error Order L*-error Order
41 2.372 x 1074 — 4501 x 10 —
81 1.129 x 10 1.07 2,125 x 1074 1.08
161 5.388 x 10°° 1.06 9.975 x 10~° 1.09

Dirichlet boundary conditions are enforced on the 92 using the exact solutions. Figure 5
shows the numerical solution computed with the Crank—Nicolson schemeatt = 0.25 with
81 grid points. Tables XVI and XVII show the results of the numerical accuracy tests.
Note that the Crank—Nicolson scheme is no longer second order accurate overall, due to
the loss of one order of accuracy in the computed interface velocity. However, as shown
in Table XVIII, the exact interface velocity can be used to obtain the expected second-
order-accurate results (in this case the problem reduces to solving the heat equation on a
time varying domain). In general, the exact interface velocity is not known, so we use the
simpler backward Euler method for the two- and three-dimensional examples that follow.
Even though the backward Euler method is only first order accurate in time, we still derive
significant benefits from the symmetric second-order-accurate spatial discretization.

4.3.2. Example 11

Let Q@ =[-5, 5] x [—5, 5] and consider the Frank sphere which is an exact solution of
the Stefan problem; see, for example, [2]. In two spatial dimensions, the exact interface
location isadisk of radius R = s,4/t with an exact solution of T = 0 inside the disk and

F(s) >
T=Tol- 34
( F(s) 39
outside the disk, where's = %,r = /X2 +y2 F(s) = E1(s%/4),
© ex
e = [ %0 a (35)
z §
and the value of s, depends on the choice of T,; e.g., wetake T, = —0.5implying s, =

1.56. Initially,t = 1sothat R = 1.56 and ¢ = /x2 + y2 — 1.56. Inthisexample, [hy] = 1
andtheinterfacevelocity isgivenby S= —[VT - N] = %. Dirichlet boundary conditions
are enforced on the 92 using the exact solution. Figure 6 shows the numerical solution

TABLE XVII1
1D Stefan Problem (Exact I nterface L ocation)—Crank
Nicolson—At ~ AX

Number of points L -error Order L*-error Order
41 2.716 x 10°° — 6.621 x 10°° —
81 6.789 x 105 200 1479x10° 216

161 1.681 x 10°® 201 4.055x 10°° 187
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TABLE XIX
2D Stefan Problem—Backward Euler—At =~ Ax Error in the Temperature Field

Number of points Lt-error Order Le-error Order
41 1.912 x 1073 — 2.706 x 1072 —

81 9.587 x 1074 0.99 1.600 x 102 0.75

161 4.195 x 10 1.19 1.148 x 102 0.47

FIG. 6. 2D Stefan problem. Thelower dimensional y = 0 cross section of the solution is shown. The circles
are the computed solution, and the solid line is the exact Frank sphere solution. The two interface pointsin this
cross section are located near x = +2, where the temperature profile is kinked.

2
—— Exact
o 20 Points
1.9 r o 40 Points
= 80 Points
* 160 Points o

1.8

17

1.6

1-5 L 1 L 1 L 1 L 1 L
1 11 1.2 1.3 1.4 15

FIG. 7. 2D Stefan problem. The graph shows the growing interface radius as a function of time. The exact
Frank sphere solution is plotted as a solid line, and the computed solutions are shown for four different grids. The
computed results clearly converge to the exact solution.
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TABLE XX
2D Stefan Problem—Backward Euler—At =~ AXx Error
in the Frank Sphere’'s Radius

Number of points Lt-error Order L>-error Order
21 1.812 x 10° — 1.674 x 10t —

41 3105x 10' 254 6.350x 1072 139

81 6.013x 102 230 2847x102% 115

161 139%6x 102 217 1159x102 129

computed with the backward Euler scheme at t = 1.5 with 60 grid points in each spatial
dimension plotted on top of the exact solution. Figure 7 showsthe convergence of the Frank
sphere solution’s radius as the grid size is refined. Tables XIX and XX show the results
of the numerical accuracy tests on the temperature field and the radius, respectively. The
numerical estimates for the radius were calculated using the grid points adjacent to the
interface.

levelset
2 T T T T T T T

1.5r .

_2 1 1 1 1 1 1 1
—2 -15 -1 -0.5 0 0.5 1 1.5 2

FIG. 8. 2D Stefan problem. The contour shows the interface location at t = 0.15. This computation uses
1000 grid points in each spatia direction. The supercooled materia in the exterior region promotes unstable
growth.
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FIG. 9. 3D Stefan problem. The contour shows the interface location at t = 0.14. This computation uses
100 grid points in each spatial direction. The supercooled material in the exterior region promotes unstable
growth.

4.3.3. Example 12

Thefollowing two examplesillustrate our method’s potential for modeling crystal growth
in two and three spatial dimensions. We obtain a fair amount of detail in the dendrite
structureswith littlecomputational effort, since our method yieldsasymmetriclinear system
that can be inverted efficiently. (Both 2D and 3D numerical experiments were performed
on a Pentium I11 laptop.)

Let @ =[—1.5,1.5)? for the 2D case and Q = [—1.5, 1.5]° for the 3D case, with an
initially circular (spherical) interface of radius 0.1. Initially, T =0 inside @, and T =
—0.5 outside ~. Here, [hy] = 1, so the interface velocity is given by S= —[VT - N].
Dirichlet boundary conditionsof T = —0.5areenforced on 92. The T = —0.5 material is
supercooled and the interface grows outward in an unstabl e fashion as shown in Figs. 8 and
9. Of course, we expect anisotropic effects due to the grid, since the interface isunstablein
this supercooled example.
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5. CONCLUSIONS

We have proposed avery simple algorithm for obtai ning second-order-accurate solutions
to the variabl e coefficient Poisson equation with Dirichlet boundary conditions on irregular
domains. Our discretization of the problem produces a symmetric matrix which is straight-
forward and computationally inexpensive to invert. Current second-order-accurate state of
the art algorithms are more complicated to apply and produce nonsymmetric discretization
matrices which are more costly to invert. While some authors claim that they can efficiently
invert nonsymmetric matrices, it makes little sense to use a discretization that is both more
complicated and produces anonsymmetric matrix when one can useasimpler discretization
and obtain a symmetric matrix.

With anumber of numerical examples, we have demonstrated that second-order-accurate
numerical results are readily obtained on reasonable grids. In addition, we have shown how
the proposed symmetric discretization can be applied to an implicit time discretization of
the heat equation on an irregular domain to obtain second-order-accurate results there as
well. Last, we addressed the Stefan problem where second-order-accurate results can be
obtained only if the interface velocity is known to second-order accuracy. Unfortunately,
the interface velocity depends on derivatives of the temperature which are one order less
accurate than the temperature itself producing overall first-order-accurate results. However,
our method still lowers the truncation error in this case as the decoupled heat equation
step can be solved with second-order accuracy. Our symmetric discretization enabled usto
carry out numerical experimentsin three spatial dimensionsin areasonable amount of time
without the need for a parallel implementation of the code.
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